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To prove Theorem 3 we use equality (4) and direct estimates. The theorem on asym- 
ptotic stability can be formulared analogously. 
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0 

R .  be the solution of the system of equations 

z" (t) = A (t) z (t) ÷ b (t), z (0) = =o (0 ~ t ..< r)  

The vector y (t) accessible to observation is given by the relations 

dy (t) = h (t) H (t) x (t) dt ~, o (t) d~ (t), y (0) ~ 0 

We consider the problem of optimizing phase coordinate bounds. We obtain the 
conditions for the solvability of the problem and establish the form of the opti-  
real observation laws. The paper is closely related ¢o [ I ,  2].  The problem of 
optimizing the observation process has been studied from another viewpoint in 
[3, 4] .  

Let a plant's phase coordinate vector z (z) from an n-dimensional  Euclidean space 

(i.i) 

(1.2) 

The elernenrc of the roan'ices A (t), H (t), a (t) and b (t) are continuous functions. The 
random variable x (0)has a Gaussian distribution with the covariance matrix 

Do = M (Zo -- MxO (Zo -- Mzo)', Do > 0 

Here the prime is the sign for transposition, M is the mean, the symbol D 0 > 0 signifies 
the positive definiteness of  matrix Do. The Wiener process ~ (t) does not depend upon 
z (0), and the matrix o (t) o' (t) > O, 0 ~ t ~ r .  Without toss of generality [2] we can 
rake the dimension of vector y (t) equal to n. The control of the observation process is 
effected by choice of the scalar function /, (t~. W e  comider the linear combination 
q 'z  (T) (the nonzero vector q ~ R.) is specified). Let  D (T~ be the covariance matrix 
of the conditional distribution of vector z (T) under condition y (s), 0 ~ s ~ T. 

P r o b l e m  1.  Determine the function "/(0 =/~'~ (t) (the optimal observation law) 
which minimizes the expression (1.3) q'D (r) q 
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such that T 

0 

where the constant N > 0 is known. 
Functional (1 .3)  equals the conditional variance of  the quantity q'=(7) of interest to 

the observer. The integral (1.4)  yields the quality of  the control of  the observation. 
This integral  has a simple mechanica l  sense. Namely [5], integral (1 .4)  equals the total 
number o f  rneasm~ments on the interval [0, T]. Therefore; requirement ( I .  4) is a con-  
~ a i n t  on the total number of  measurements.  

Since the density of  observatlom T (t) at  an instant t is not bounded, we assume a 
p r i o r i observations of  the form 

ti-~t 

where the constants ttl > 0 and 6 (t) is the delta function. The quantity being observed 
equals [1]  

where ~ (tt) is a sequenca of  mutual ly- independent  equally-distributed Gauusian var ia-  
bles with zero mean and unit covarlance matrix. 

2 .  By z (t. s~ we denote the fundamental  matrix of the homogeneous system (1.1)  
for b (t) - ~ -  0 and we set T 

Q : I  : '  (s,T) VO)z(s,T)ds 
o 

where 
V (s) = H'  (s) a (s)<~' O) -i H O) 

The paper main  result ls the follosdng, 
T h • o r e  m .  Assume that the coefficients of  Eqs. ( I '  I) ,  (1 .2)  satisfy the re quiroments 

of  Sect .  1 and that the matr/x Q > O. Then the opt imal  observation law 7 (t) solving 
Problem I has the form 

"r (t) == ~ ~16 (t - -  ti), 0 ~ t~ ~ t~ ~ . . .  ~ t m ~ T (2.t) 

where the constants ~ ~ 0 and ~1 + P~ + -.. + P~ = N, while the integer m ~ ~/~ n 
(n + t). 

The proof of  the theorem comists o f  four stages. 
1". By r (t) we denote the matrix satisfying the equation 

dr (t) ffi= [ - -  r ( t )A (t) - -  A '  (t) r (t)l dt + v (t) du (t) 

r (0) •ffi Do "~ (0 ~ t ~ T) i2.2) 

in which the scalar control u (t) is chosen from a set U of  nondecreasing func t ion  of 
bounded variat ion on the interval [0, 7],  equal to zero for t = 0. We recal l  that  equa-  
tions of  form (2. 2) are to be undersroml in the sense of  the cor~sponding integral iden- 
tity, while the integral t 

~ V (s) du is) 
o 

is a Lcheague-Stielt~et i n t eg ra l  By virtue of  the condition r (0) > O, of  the definition 
of  set U and of  Eq, (2.1) ,  the matrix r (t, u) > 0, 0 ~< t ~< 7 ,  for any function u ~ U. 
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Sometimes the solution of  Eq. (2 .2)  will be denoted by the symbol r (t, u) to empha-  
size its dependence on the con~ol  u ( t ) .  We set 

T 

~ u n = ~  J d u ( 0 1  
0 

The aim of  the first stage of  Lhe proof is to establish the existence of  a control 
u (t) E U which solves an auxiliary Problem 2, namely  find a function u (t) E U, mini -  
mizing the functional q'r (T, u) -2 q, such that lI u t[ ~ N. 

Let Ux be a set of functions from U, ~ttisfying the requirement [[ u[I ~ N. We intro- 

duce a sequence u i (t), i=l, 2 .... of functions from U~ by meam of the relations 

limi_.= q'r (T, ui)-x q == infu~ q'r (T, u)-I q = I 

From the definition of  set U1 it follows that al l  the functiom u t (t), 0 ~ t ~ T, as well 
as their nctmus, are bounded by the number N. From this and from Helly 's  second theorem 
it follows that  some subsequence of  the sequence ui (t) convegges to u0 (t) at each point 
of  the interval [0, T] . For brevity let us accept  that it is the sequence u~ (t) itself that  
converges to u 0 (t). From this and from Helly 's  first the ,xem we conclude chat u i (t) 
converges to uo (t) also weakly. 

For any points t z, t=, t,, ~ tx of  the interval [0, T] we have 

Z,o (~,) - -  ~ (tl) ~ "0 (t ,)  - -  ut (~) + ut (tO - -  u0 (t~) 

From this bound and f~om the l ~ n u c i ~  convergence of  u t (t) it follows that the function 
Uo(t ) does not decrease. Hence, [] u 0 II ~ N. Thin, to wove the optimali ty of  u0 (t) 
relat ive to Problem 2 it remains only to v e r i ~  that I is equal to q'r (T, Uo)-~q. 

The boundednen,  tmtfcrm for 0 ~ t ~ Y and for all | == 1, 2 . . . .  of  all  elements of  
matrices r (t, ut) follows from Eq. (2 .2 ) , and  from the properties of  u~ (t) . Therefore, 
we can find a constant c > 0 such that 

ts 

[ ! (r(t, uO .4 (t))l,,dtl ~ c(t.2-- h) (2.3) 
tt  

for any point t~ ~ q of  the interval [0, T] and for any l, j ---- t ,  2 . . . . .  n .  Here Qtj 
denotes the l i e lement  of  matrix Q. From bounds (2 .3)  we see (cf  [6], p. 82) that the 

I 
integrals ~ r (s, ui) A (s) ds 

0 

as functions of t are of  bounded variation of  the interval [0, T] ; the variation is uni-  
form in view of  the uniform boundcdness of  the elements of  matrices r (t, ui) and of  the 
thcorem's  hypotheses. We can establish analogously that the expressions 

t t 

v ~,) a ,  i C'), .~ A'  c') ~ (', ",) d,  
0 0 
I /  

are of  bounded variation, uniformly in ~, on [0, T]. From this and from gq. (2 .1)  it 
follows that the elements  of  matrices r (t, ut) also are of  bounded variation, uniformly 
in i - -  t,  2 . . . . .  on [0, T] . 

Hence, using the arguments which were applied above to the sequence u~ (t), we can 
show (passing, i f  necessary, to a subsequence) that r (t, u~) converges point'wise to r 0 (t). 
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Then,  from the weak convergence of ui (t) to u0 (t) and from Lebesgue's theorem on 
passing to a l imi t  under the in tegra l  sign, i t  follows that  

t t 

limi...~ ( !  [ - -  r (s, ul) .4 (s) - -  A '  (s) r (s, u,)J ds + I V (s) dut (s))== 
- 0  0 

t t 

f < -ro  A ( ' ) - -  A' I,) C,)) d, + V (,) d~ (s) 
0 0 

From the last  equal i ty ,  from the convergence of  r (t, u~) to r0 (t) , and from Eq. (2 .2)  
it follows that ro (t) = r (t, uo). By the same token we have established the equality 

I ~ q'r (T, uo)-Xq (2.4) 

2 °.  We now prove that  
l[ u0 i} = N (2.5) 

Let us assume to the contrary that  [I uo [I < N and show that  in this c u e  we can find a 
function u 1 E Ux for which 

q'r (T, ux) -x q < q'r (T. uo)-lq (2.6) 

It  is c lear  that  bound (2 .6 )  is impossible  s ince i t  contradicts  equal i ty  (2 .4) .  es tabl ished 
in stage 1 °, and the def in i t ion  of the number I .  We assume e being a comtant ,  

u x ( t ) = u o ( t ) + e t ,  e =  r - x ( A ' - - I l u o l l ) > 0  

It  iS easi ly  ver if ied that  ul E Vl. Further, using the equal i ty  

q'r (T, U l ) - l q  = maxy~R n [2y'q - -  y 'r  (T, Ul) ] (2.7) 

we obtain,  in view of  (2, 2) and of  the  def ini t ion of mat r ix  Q, that  

q'r (T, uO -t  q ~ max.i~Rn [2y' q - -  y 'r  (T, uo) - -  y'sQy] < 

m a x ~ R  ~ [2y' q - -  y 'r  (T, uo) y] == q'r (T~ uo) - t  q 
Equali ty (2 .5 )  is establ ished.  

3". We fix ~e matrix r (T, Uo) and we consider an auxiliary Problem 3, namely 

to find a function co (t), a) (o) ---- 0, with minimal norm, such that 

r(0, c o ) = r ( 0 ) ,  r (T,  o ) = r ( r ,  u0) 

We emphas ize  that  in Problem 3 we seek the op t ima l  co (t) among a l l  functions of 
bounded var ia t ion  on [0, TJ and not just the monotonic  ones, as was the case in Prob- 
l~rm 1 and 2. 

The a im  of the third stage of  the proof iS to substantiate that  u0 (t) solves Probl¢m 3. 
First of  aLl. i t  is c lea r  that  the function u0 (t) iS admiSsible for Problem 3, s ince | so ~ == 
N < co, r (0, uo) -~ r (0), and at  the instant 2' the solution of  (2 .2) ,  corresponding to 
u o , equals r (T, u0). From the exis tence  of  the admiss ible  function we can  es tabl i sh .  
analogously as in stage 1 ° of  the proof, the exis tence  of the op t ima l  co0 (t) for Problem 
3, and s ince Ii u0 ~ = N, we have ] ¢o o I~ < N. 

The va l id i ty  of  the third stage of  the proof wi l l  be eatablished i f  we show, firstly, that  
the solut ion of  Problem 3 is y ie lded  by a nondecreasing function and, secondly,  t h a t ~  (t) 
iS op t ima l  for Problem 3 in the class U x. Let m assume that  coo (t) is not an increasing 
function.  We then set 

coo (t) = cool (t) - -  o0~ (t), co0a (0) = co0~ (0) = 0 (0 < t < T) 
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t t 

0 0 

and, by virtue of ore assumption, the function 0>o2 (t) has points of growth on [0, T], i . e .  
~woI~ > 0; consequently, ~ co0t n < N. On the basis o f (2 .  7) we have 

q ' r  ( r ,  u.o) -1 q == maxpe  l~ n [ 2y'q - -  y ' r  ( T,  uo) y] 

From this and from (2.2). and because oo2 (t) is nondec~reasing, we conclude that 

I =. q ' r  (T, uo) -s q == 
T 

m a x t ~ R n I 2 y ' q - - y ' z '  (0, T ) r  (0)z CO, T ) y - - y '  I z' ( s , T ) V C s ) z ( s , T ) d o ) o ( s ) y l ~  
0 

T 

[ -  y' I " '  ( ' '  v ( , ) ,  (,. I') (,) y + 2y'q - (o. m r  co): (o. Yl = 
0 

q'r (T, o)o~) -~ q 

Hence, the nondecreasing function (%1 ~ Us solves Problem 2. However, IJ ~01 Jl <: N. 
Therefore, by a verbatim repetition of the arguments in stage 2" of the ]xoof of the theo- 
rem (with ~ replaced by (~) ,  we are convinced of the existence of a function ul ~ U~, 
[I us li = .,V, fo r  w h i c h  

q'r (T, ul) "x q < q' r (2', COol)-lq ~ q ' r  ( r ,  uo) -~ q 

The latter is obviously impcuible  because it con~a(flcts the op~malt ty of u0 (t) in 
Problem 2. The optimality of u 0 (t) in the class U I is established in like manneL 

4". On the basis of stages 1" and 2" of the woof the solution of P~oblem 2 is 
yielded by a nondecreasing function with a norm equal to N. On the other hand, by 
virtue of stage 3", the solving of Problem 2 is equivalent ~ the solving of Problem 3. 
which in the usual fashion reduces to the moment  p~oblern in view of the linearity of 
Eq. (2.2) (see [3, 7] ) .  Therefm'e, with due regard to [7] and to stages :[" - 3", the opti-  
mal  function solving Problem 2 is a nondecreasing piecewise-constant function with a 
norm equal to N and with a number of jumps not exceeding ~/2 n (n --~ i). 

Finally, let us ascertain the relation of Problem 1 to Problem 2. By virtue of [1] the 
matrix D-t  (t) is a solution of the system of equations 

D' -~  (t) ~: - -  D -~  (t) ,4 (t~ - -  ,4' (t) D -~  (t~, + V (t) ? (t) (2.8) 

Any nonnegaUve function ? (t) satisfying requirement (1.4) can be associated with a 
function u (t) of bounded variation on [0, T.~ 

t 

== ~' "r (s) ~s, u CO) -= 0 (2.9) u (t)  ,~ 

0 

and, in view of ( I .  4), II u II ~ N. Let us extend the set of functions V (t) up to U.. C. U, 
by formula (2. 9), Then Problem I turns into Problem 2. The inverse correspondence 
holds not for any function u (t) of bounded yariation but only for those which do not con- 
tain a singular component [8]. In particular, such a correspondence holds for plecewise- 
constant functions u (t). From this and from the established form of the optimal function 
in Problem 2 it follows that the optimal function ,, (t) in Problem I can be chosen in 
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accordance with (2.1). The theorem is proved. 

3, One of the hypotheses in the theorem proved in Sect. 2 is the requirement Q > 0. 
Let us formulate certain conditions in terms of the coefficients of Eqs. (1.1), (1.2), under 
whose fulfillment the matrix Q is positive definite. 

L e m m a .  Assume that the matrices A, H, ~ are constant and satisfy the require- 
ments of Sect, 1. Then O > 0 if and only if the rank of the matrix 

RI = ( I t ' ,  A ' t t ' ,  . . . .  ( A ' ) " - q t ' )  

equals the number n,  namely, the dimension of system (1.1).  
P r o o f .  From the results in ['2] it follows that the necessary and sufficient condition 

for the positive definiteness of O is that the matrix 

R~ = (H' (o') -t, A ' H '  (~')-" . . . . .  (A')  ,~'t H'  (o') -1) 

be of full rank. It  is also clear that from the condition ~o' > 0 follows the nomingulas- 
iCy of matrix ~. Hence, it is sufficient to show that the ranks of matrices R: and R.. 
are equal for any nonsingular a .  

By Rs we denote a block diagonal matrix of dimension n*- × .2 with elements (c~')-' 
on the main d iagonal  The rank of matrix R~ equals n 2 because o is nomingul~.  

Moreover. R, = R~R 3 (3.1) 

Thus, the equality of the ranks of matrices Rx and R, follows from formula (3.1) and 
from Sylvester's inequality ( [9], p. 57). The lemma is proved. 

Using [3], analogously to the proof of the lemma,  we can obtain certain conditions 
for the positive definiteness of matrix Q also for the case 'of  variable coefficients A, 
H, a. For example,  let the functions A, H, ~ satisfy the requirements i n  Sect, 1 and 
let thet~ exist a point s ~ [0, 7] in SOme neighborhood of which the derivatives of 
the matrices A ,  H up to order . - -  i are continuous, while at the point : the rank of 

the matrix (K1 (a) . . . . .  K .  (s)) 

equals the n u m b e r . ,  where 
dK i (@ 

K ~ ( s ) = S ' ( , ) ,  Kt+ z ( s ) =  ds + A ' ( S )  K i(s) 

Then matrix O > O. 
The theorem proved in Sect. 2 reduces the question of an optimal observation law to 

the problem of minimizing a scalar function of a finite number of variables. For this 
we should solve Eq.(2. 8) w i t h ' / ( t )  equal to (2.1),  As a result functional (1. 3) proves 
to be a scalar function of the variables ~l and t t. Let us illustrate what we have said 
by examples.  

E x a m p l e  1 .  Let Eqs. (1 .1) , (1 .2)  be scalar with comtant coefficients, where 
H (t) = a (t) = i. Then, according to Theca~m 1 the optimal observation law has the 
form 7 (t) = N6 (t -- ix). Substituting this 7 (t) into (2. 8), we obtain that t z = 3" when 

a > 0; t~ = 0 if a < 0 ; while for a = 0 the value of functional (1.3) does not depend 

upon the actual  instant the observat/om are made. 
E x a m p l e  2 .  Let Eqs. ( l . l ) ,descr ib ing  the free motion of a material  point on a 

straight line, have the form 

zl" (t) = z~ (t), z2" (t) = 0 (3.2) 
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Matrix D (0) is diagonal  with diagonal  elements dx, d 2 equal to the a p r i o r i  var i -  
ances of  the coord lna~  and of  the veloci ty,  respectively.  We assume ~h.at the ¢o~dina te  
is observed, L e. 

dy (t) = h (t)xx(t) dt + d~ (t) (3.3) 

and we are required to min imize  the variance of the veloci ty  z 2 (T) at the end of  the 
observation process. 

According to the theorem the opt imal  observation law y (t) solving Problem 1 (in 
which q' = (0, l)) for the system (3.2),  (3 .3)  has the form 

'y (t) : .0.35 (t - -  ts) + ~,15 ( t - -  t l )  "~ 1~15 ( t - -  tl) , 

where t~ are certain points of  the interval [0, r ]  and the notmegative constants ~ are 
subject to the requi rement  ~tx + ~2 + ~s = 1. From tin.is and from Eq. (2. 8) we obtain 

T [ s 1-1  D (T) ---- z (T, 0) (D (0))-~ + z' (x, 0) V~z (~, 9) ~' (x) dr  (T, 0) (3A) 
.o 

where the elements  v~/ of  matrix V z are equal zero except  for vxa = i. The elements 
zij (t, 0) of  the matrix z (t, 0)are  

zxx (t, 0) = ~2 (t, 0) = t ,  z~2 (t, 0) = t, zna (t, 0) = 0 

Carrying out the simple ealcula t iom we obtain from (3.4)  that Problem 1 is reduced 
to the determination of the numbers ~t, ti which maximize  the function 

A ffi (dx "x + t) (~1 .+_ ~1t2 ÷ ~ h ~  + ~at32) _ (~ht~ + ~ h  "k ~tsh) ~ 

b t t ~  0, ~1"~- bl~ ~ - ~ts ffi 1, O~ t i~  T, ~ ffi= t ,  2, 3 (3.5) 

Here A is the determinant  of the matrix occ tming wimin the brackets in (3.4) .  
However, for any fixed p~ satis firing constraints ( 3 . 5 ) ,  the function in the variables 

t i (t t ~ 0) (d~'x x + i) (}xltl = + ~q=  + ~xsta =) -- (~tzt a + btnt2 + p~ts) = (3.6) 

is positive on the basis of  Sylvester 's  crimrion for positive definiteness (see [9], p. 151).  
In ol~ler words, the quadratic form (3 .6)  in the variables ti is positive definite for any 
fixed ~ ,  i . e .  its maximum with respect w ~, 0 ~ t~ ~ T ,  is reached at one of  the 
vertices of~he l~tree-dimensional cube 0 ~ t / ~  T, z = 1,2, 3.From this and f~om the 
fact  that the function 

achieves a maximum when ~ ----- i, it follows that in the original Problem I the quantities 

tz = t~ ffi ts = T, i.e. all observations are carried out at the end of the observation 

process. 
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A possibility is indicated of appearance of density excutlions in one-dimensional 
unsteady fluid flows near the critical point of the phase equilibrium, resulting 
from the singularities in the equation of state. 

The present investigatiom are concerned with the question, whether the c laui -  
cal solutions of the problem and the initial conditiont for the one-dimensional 
urateady gasdynamic equations can become infinite in the nonisoentropic case. 
Here we have to consider a system of three quasilinear hyperbolic equations 
which, as we know [1 .2 ] ,  usually have unbounded solutiom. On the other hand, 
the system of gasdynamic equatiom has a number of specific properties. Of t h e e  
the most important is the presence of a single invariant, i .e .  of a function which 
remains bounded [1] .  Another inspcrtant property comists of the fact that the 
generalized Riemann invariancs satisfy nsulti-dimensional integral equations of 
Volterra type, in which the cone of inte~ation is represented by the domain of 
definition of the hyperbolic equations and the boundedneu of the solution follows 
from the fine properties of the integrability of the kernel. In the terms of the 
gasdynamic equatiom the latter lead to re.~ictions imposed on the equations of 
state. The properties themselves follow from the boundedneu of the variation of 
entropy along the sonic characteristics and from the weak linearity (tartgency) 
of the entropic characteristics [3]. 

The conditions which must be imposed on the equations of state in order to secure the 
boundedness, are e x p r e ~ d  by the following inequalities r31 

(i) 


